trinity

ROBOTIZED SERVING OF AUTOMATED WAREHOUSE – ROBOTINO[®] COMMUNICATION

The TRINITY project has received funding from the European Union's Horizon 2020 research and innovation programme under the GA 825196

Training Module Developer version

www.trinityrobotics.eu

Introduction

 Fully functional, scaled-down, table-top model of an automated warehouse served by an omnidirectional mobile robot. Used as an attraction in exhibitions. The goal is to demonstrate the capabilities of mobile robots in intralogistics.

System design

- Based on an omnidirectional mobile robot equipped with three omniwheels.
 - Kiwi drivetrain
- The automated warehouse is modeled by a pen vending machine operated by a microcontroller.
- The vending machine has 3 slots for holding 3 differently colored pens
- Serving one pen at a time.

Hardware infrastructure

- FESTO Robotino[®]
- Uniquely designed parts
 - Workpiece tray,
 - ARDUINO[®] controlled vending machine,
 - Proximity switch holder,
 - proximity of the wending machine during the final approach.
 - Optically detectable path
 - Painted or glued tape.
- Commercially available parts
 - 4 m² wooden flooring,
 - Two standard light sources on a tripod,
 - Laptop with Microsoft Windows[®] operating system.

Image Source: https://www.festo-didactic.co.uk/gb-en/learning-systems/education-and-research-robots-robotino/thehighlights.htm?fbid=Z2IuZW4uNTUwLjE3LjE4Ljg1OC40NzUy

Bent sheet metal part accommodating the workpiece during the wending process.

Bent sheet metal part holding in place a factory standard optical proximity switch accessory to detect the

Software infrastructure

The complete robot control software is made with National Instruments
LabVIEW[™] graphical programming language

Legal disclaimer: LabVIEW[™] is a trademark of National Instruments. This publication is independent of National Instruments, which is not affiliated with the publisher or the author, and does not authorise, sponsor, endorse or otherwise approve this publication.

Cyber-security

Closed system with no need for access to the internet.

Vulnerabilities	
Control laptop security: if the laptop is online for any reason	Com
Wireless encryption	-
Wireless router security key issue	MAC a
Interference caused to wireless communication	
DHCP service	Disabli
The qDSA protocol is open source and publicly available	
No encryption implemented in the qDSA protocol	
e mobile robot enables a secondary connection in spectator mode I sends the camera image and feedback messages to the spectator	

and

Mitigation

npletely prevent control laptop internet access

Already has WEP, will be changed to WPA

ddress filtering on the wireless network. AP only accepts allowed MAC addresses

ng the DHCP server, only fix IP addresses will be allowed

trinity engage with Agile MANUFACTURING

Nodule description The main functionality of the module is to communicate with the Robotino® Robotino® is a mobile robot platform for research and education developed by Robotics Equipment Corporation GmbH

Product homepage: https://www.festo-didactic.co.uk/gb-en/learning-systems/education-and-research-robotsrobotino/?fbid=Z2IuZW4uNTUwLjE3LjIwLjg1OA&page=1&offset=0&showitems=32 Company homepage: http://www.servicerobotik.eu/

Nodule description This module is an adaptation of the qDSA protocol of the API1 for Robotino® v2 Made in native Vis for use with LabVIEWTM software without the need to call external code

Description available at https://wiki.openrobotino.org/index.php?title=Downloads#API.2C_Plugins_.26_Packages

Nodule description The module consists of two continuously running parallel loops (tasks). First task is dedicated to the keep-alive type communication of the Robotino[®], where the Robotino[®] continuously sends data

to the host computer and expects data in response. The second task is the receiver of the camera images, continuously transmitted by the Robotino[®] if the camera is

enabled.

Description available at https://wiki.openrobotino.org/index.php?title=Downloads#API.2C_Plugins_.26_Packages

Keep-alive communication Host side

 The inputs and outputs for the module are separated into two sections: the "Keep-alive" communication from the PC (Host) side and the Camera control from the PC (Host) side

	Inputs	Outputs
qDSAprotocol	State of 8 digital outputs	State of 8 digital inputs
	State of 2 relay outputs	State of the collision detection switch
	Motor speed set-points in RPM for each motor	State of the power button
	Reset Position for each motor	Sequence number of the communication
	Break for each motor	Readings of 8 analog voltage inputs
	On-board PID controller parameters for each motor	Current readings of each motor
	Odometry (Position of the robot)	Actual position of each motor
	Set Odometry switch	Actual speed of each motor
	Camera enable switch	Actual Odometry (Position of the robot)
	Shutdown switch	Readings of 9 IR distance sensors
		Reading of the battery voltage
	IP address of the Robotino®	Is the Robotino [®] connected switch
	Constructional parameters of the Robotino®	Kinematics and inverse kinematics matrices of the Robotino®

Camera control Host side

 The inputs and outputs for the module are separated into two sections: the "Keep-alive" communication from the PC (Host) side and the Camera control from the PC (Host) side

Inputs

IP address of the Robotino[®]

UDP Port Parameters

Image parameters

The TRINITY project has received funding from the European Union's Horizon 2020 research and innovation programme under the GA 825196

Outputs

Is the Robotino[®] connected switch

Image Framerate of the image

www.trinityrobotics.eu

@TRINITY Robotics DIHs

The TRINITY project has received funding from the European Union's Horizon 2020 research and innovation programme under the GA 825196

Thank you!

Levente Raj Budapest University of Technology and Economics (BME) Department of Mechatronics, Optics and Mechanical Engineering Informatics

info@trinityrobotics.eu

