
www.trinityrobotics.eu

ONLINE TRAJECTORY GENERATION FOR INDUSTRIAL ROBOT WITH 3D 

CAMERA

INTEGRATION TUTORIAL



Hardware requirements

• Workstation PC

• GPU at least NVIDIA GeForce GTX 1060 or Quadro P5000, AMD 
Radeon Vega 56

• Memory at least 8 Gb

• Free disk space at least 1Gb

• USB 3.0 port

• Intel Realsense D435 camera

• Kuka Industrial robot compatible with ROS



Software requirements

• Ubuntu 18.04 or 20.04 OS

• ROS Melodic or Noetic distribution



Pre Work

• Ubuntu 18.04 or 20.04 OS installed

• ROS Melodic or Noetic distribution installed

• Camera connected to PC usb



Software requirements

• Ubuntu 18.04 or 20.04 OS

• ROS Melodic or Noetic distribution



Software requirements

• Ubuntu 18.04 or 20.04 OS

• ROS Melodic or Noetic distribution



Choosing the right camera

• Choosing the camera depends on environment and application
requirements
• Triggering, IP classification, connectivity, working principle, lighting…

• In this case, we need a high-resolution RGB+D image for object
detection and trajectory planning

•  Intel Realsense D435i
• Stereo camera with IR projector for enhanced accuracy



Positioning the camera

• Things to consider:
• Good view of robot working area

• Avoiding disturbance
• Shaking, temperature, dust/fog/smoke, electromagnetic interference

• Lighting

• Connecting the device

• Angle between camera and working area
• Perpendicular is recommended to avoid positioning errors



Installing the camera

• Mounting guidelines may vary between equipment
• Most manufacturers provide detailed screw pattern drawings, mounting

instructions and mounting brackets

• Follow the manufacturer’s general instructions

• Ensure proper alignment



Interfacing ROS with camera

• Software/Hardware infrastructure:



Interfacing ROS with camera

• We will need the following software for our camera:
• Intel Realsense SDK (OS install)

• Realsense2-ros (ROS Package)

• We will also need an object detection framework:
• Find-object (ROS Package)

• Let’s install the software on our PC



Installing camera drivers

• Download and install Intel Realsense SDK:
• https://www.intelrealsense.com/sdk-2/

• Clone the realsense-ros repository into ROS workspace:
• Cd ~/catkin_ws/src

• Git clone https://github.com/IntelRealSense/realsense-ros.git

https://www.intelrealsense.com/sdk-2/
https://github.com/IntelRealSense/realsense-ros.git


Installing camera drivers

• Install missing dependencies:
• cd ~/catkin_ws

• Rosdep install --from-paths src --ignore-src -r -y

• Build the workspace:
• Catkin_make



Verifying camera driver installation

• Start the ROS Master:
• roscore

• Start the realsense data publisher nodelet:
• Roslaunch realsense2_camera rs_aligned_depth.launch

• Run rviz:
• Rosrun rviz rviz



Verifying camera driver installation

• In Rviz:
• Set ”Fixed frame” to ’camera_link’

• Add a new display to the scene

• Select ”DepthCloud” and click OK

• Open the DepthCloud display menu and select
’/camera/aligned_depth_to_color/image_raw’ as Depth Map Topic

• The depth map is now visualized in Rviz scene

• Let’s add a color map to this scene. Click ”Color image topic” from
DepthCloud display menu

• Select ’/camera/color_image_raw’ topic and click OK

• The depthcloud is textured with the RGB camera data with proper
alignment



Installing object detection framework

• Close all running ROS processes

• Get the find-object package:
• Cd ~/catkin_ws/src

• Git clone https://github.com/introlab/find-object.git

• Build the workspace:
• Cd ~/catkin_ws

• Catkin_make

https://github.com/introlab/find-object.git


Configuring object detection framework

• Start ROS master and realsense camera nodelet
• Roscore & roslaunch realsense2_camera rs_aligned_depth.launch

• Run ”rostopic list” and write down following topics:
• RGB image topic (camera/color/image_raw)

• Depth image topic (camera/aligned_depth_to_color/image_raw)

• RGB camera info topic (camera/color/camera_info)



Configuring object detection framework

• Open the ’find_object_3d.launch’ file
• Gedit ~/catkin_ws/src/find_object/launch/find_object_3d.launch

• Update the following parameters with topic names mentioned
previously:



Verifying object detection framework

• Launch find_object_3d:
• Roslaunch find_object find_object_3d.launch



Verifying object detection framework

• Select an object from the working area:
• Click ”Edit  Add objects from scene…”

• Click ”Take picture”

• Select the object region from scene and click ”Next”

• Confirm object area features by clicking ”End”

• The object is instantly trained and will be detected from the working
area

• Object ID and coordinates in camera frame are published to 
/objects topic



Interfacing ROS and robot

• We will need the following software for our robot:
• Robot driver ROS Package (https://github.com/orgs/ros-industrial/repositories)

• This training focuses on KUKA Robots (kuka-experimental package)

• We will also need to:
• Position and orient the camera base frame to robot base frame

• Interface the robot driver with object detection framework

• Let’s install the drivers

https://github.com/orgs/ros-industrial/repositories


Installing robot drivers

• Get the kuka-experimental package:
• Cd ~/catkin_ws/src

• Git clone https://github.com/ros-industrial/kuka_experimental.git

• Install missing dependencies:
• cd ~/catkin_ws

• Rosdep install --from-paths src --ignore-src -r -y

• Build the workspace:
• Cd ..

• Catkin_make

https://github.com/ros-industrial/kuka_experimental.git


Configuring robot drivers

• Locate and specify the robot’s IP address:
• Cd ~/catkin_ws/src/kuka-experimental

• Grep –iR Robot_IP

• Usually found in hardware controller configuration



Verifying robot driver installation

• Start the ROS Master:
• roscore

• Launch robot driver nodelet:
• Roslaunch kuka_kr6_support load_kr6r900sixx.launch

• Launch robot motion planning nodelet:
• Roslaunch kuka_moveit_configuration moveit_rviz.launch



Verifying robot driver installation

• Test jog the robot using rviz:
• Jog the robot in a safe direction

• Click ’Plan’. The robot motion is simulated in rviz

• Click ’Execute’. The computed path is sent to robot controller.

• Communication between ROS and robot controller is working



Camera position and orientation

• We will need to specify camera’s position and orientation in robot’s
base frame:
• Jog the robot in a safe direction

• Click ’Plan’. The robot motion is simulated in rviz

• Click ’Execute’. The computed path is sent to robot controller.

• Communication between ROS and robot controller is working




