
Depth-based safety system
Integration Tutorial

Preparation steps
• Hardware

• Preparing Software Environment

• Setting up Projectors/Kinect

• Installing Kinect drivers/ checking connection with ROS

• Installing Robot drivers, connecting robot to ROS

Hardware
• The following hardware is used in the setup

• Workstation

• Intel Core i7-6700HQ

• 16GB RAM

• NVIDIA GeForce GTX 970M

• Depth Sensor

• Microsoft KinectV2 (Other sensors are applicable, check compatibility with ROS environment)

• DLP projector

• BenQ MW550

• Collaborative robot

• UR5

Software Environment
• Installing linux

• Recommended linux distribution is Ubuntu 18.04, since it is compatible with ROS melodic used in
the setup. Installation instructions can be followed from here https://linuxtechlab.com/step-by-
step-guide-to-install-ubuntu-18-04/

• Installing ROS
• This implementation uses ROS Melodic distribution, Installation instructions can be followed from

here http://wiki.ros.org/melodic/Installation/Ubuntu. Full-desktop installation is recommended

• To check if ROS is installed correctly run roscore inside command line and see if it outputs any errors

• Download implementations for the Module’s ROS nodes from https://github.com/Herrandy/HRC-
TUNI/. The nodes should be downloaded to the src folder of your ROS workspace

• Build Module’s nodes using the following commands
• Source your default and workspace ROS environments

• cd <workspace_folder>

• rosdep install -r --from-paths .

• catkin_make -DCMAKE_BUILD_TYPE="Release"

https://linuxtechlab.com/step-by-step-guide-to-install-ubuntu-18-04/
http://wiki.ros.org/melodic/Installation/Ubuntu
https://github.com/Herrandy/HRC-TUNI/

Installing Projectors and Depth Sensor
• Both depth sensor and projector are are installed above the workspace in close proximity

to each other

• The devices should be installed perpendicular to the workspace area

• In case of projector, it is possible to install the device horizontally with the mirror. This can
be used to increase the distance between the projector and the display plane and
therefore increase the overall size of the projection.

• The devices can be installed either to the ceiling or with help of beam support

• The size of the projection is usually defined by the throw ratio tr of the projector, you can
estimate the required height of the installation h for the given screen width w as h=w*tr

Kinect Drivers
• To use Kinect, one should first install device drivers

• Kinect V2 https://github.com/OpenKinect/libfreenect2

• Azure Kinect https://docs.microsoft.com/en-us/azure/kinect-dk/sensor-sdk-download

• Check if device is working correctly by running k4aviewer for azure, or provided test scripts for
KinectV2

• Next, install ROS interface for Kinect

• Kinect V2 https://github.com/code-iai/iai_kinect2

• Azure Kinect https://github.com/microsoft/Azure_Kinect_ROS_Driver

• The drivers provide test launch files to check whether the node publishes correct data

• For other depth sensors please check compatibility with ROS

https://github.com/OpenKinect/libfreenect2
https://docs.microsoft.com/en-us/azure/kinect-dk/sensor-sdk-download
https://github.com/code-iai/iai_kinect2
https://github.com/microsoft/Azure_Kinect_ROS_Driver

Setting up robot
• The module is designed to work with UR5 cobot

• The base of the robot is assumed to be stationary

• Install ROS drivers for the robot

• ROS-industrial Universal Robot https://github.com/ros-industrial/universal_robot

• UR modern driver https://github.com/ros-industrial/ur_modern_driver

• Check the IP address of your robot

• You can check if the robot connection is working by using ping <robot_ip> command

• To check driver, run roslaunch ur_modern_driver ur5_bringup.launch
robot_ip:=<robot_ip>. Check if /joint_states topic publishes joint data

https://github.com/ros-industrial/universal_robot
https://github.com/ros-industrial/ur_modern_driver

Depth-based safety system
• TCP calibration

• Finding transformation between Kinect point cloud and joint positions

• Projector-robot transformation

• Setting parameters of the safety border

• Testing

Purpose of the module

• This module provides a safety model for collaborative robots using depth sensor
setup

• The safety system divides space into robot zone and operator zone

• If a change in depth happens at the border between the zones, the robots stops its
program until violation is resolved

TCP calibration

• Calibration between Kinect point cloud and robot
position is done by detecting a red dot marker and
finding the transformation of the marker coordinates
between Kinect and robot coordinate systems

• Before performing the calibration, the user need to find
the offset between the red dot marker center and the
robot end effector (unless the marker is attached
directly to the center of the flange). This can be done
using touch point method, with help of the following
library
https://github.com/Jmeyer1292/tool_point_calibration

• Four points or more are recommended for accurate
estimation

• The calculated offset should be inserted into
calibration_kinect2robot.launch file inside launch
folder of the calibration module

https://github.com/Jmeyer1292/tool_point_calibration

Robot-camera Calibration
• After TCP calibration is done, install red marker at the robot TCP point such that it would be visible from

the Kinect

• Run roscore, and run the following script in another console
• roslaunch calibration calibration_kinect2robot.launch

• Move the robot to some position visible in the camera space and press c to store the coordinates of the
point

• At least three points is needed, more points would give better estimation

• The points should not lie on the same line

• After enough points were collected, press s to calculate the transform

• Copy the transformation into tf_broadcast.launch
• First three values should be translation, 4 subsequent ones - rotation

• After values were copied, you can test the calibration with the following commands
• roslaunch ur_modern_driver ur5_bringup.launch robot_ip:=<robot_ip>
• roslaunch kinect2_bridge kinect2_bridge.launch publish_tf:=true

• roslaunch calibration test_calibration.launch

• The commands should run RViZ, in which the robot model and point cloud should align

Setting other parameters
• There are several parameters for the safety border which may need to be adjusted

• The parameters are stored inside unity_msgs/configs/config.yaml file

• dynamic_workspace_size – defines the radius of projector border against the robot

• safety_area_offset – defines how wide the visualized border line would be

• Sensitivity Parameters – change if safety stop is too/not enough sensitive

• cluster_tolerance – spatial cluster tolerance in Eucledian clustering for the module (lower value – less sensitive)

• min_cluster_size – minimum number of points for defining a cluster (less value – more sensitive)

• cloud_diff_thresh – minimum change in two depth pixels to be considered as change

• nearest_object_threshold – minimum change in depth to be considered a violation

• workspace_limits – the limiting corners of the workspace zone

Testing Safety module
• To test module, you can write a simple robot program that would move robot around

• After you tested that your program works, run the robot program on loop and execute the
following commands in the console

• roscore

• roslaunch ur_modern_driver ur5_bringup.launch robot_ip:=<robot_ip>

• roslaunch kinect2_bridge kinect2_bridge.launch max_depth:=2.0 publish_tf:=true

• rosrun robot dashboard_client.py

• roslaunch safety_model detect.launch safety_map_scale:=100 cluster_tolerance:=0.005
min_cluster_size:=200 viz:=false cloud_diff_threshold:=0.02

• The robot should stop when you move too close to it

Config files
• List of important configuration files for the modules

• /calibration/launch/tf_broadcast.launch –transformation from Kinect to robot

• /unity_msgs/configs/config.yaml – parameters for the safety configuration

Maintenance and troubleshooting
• Here we give general recommendations for troubleshooting, for more specific problems

please email to dmitrii.monakhov@tuni.fi, we will help

• General tips for troubleshooting

• Always check if you sourced ROS environment on any new console tab before running
commands. If you are using a single ROS environment, it may be easier to add source
commands to .bashrc so it is done automatically

• Check output of the scripts in the console, as it can give hints for errors

• Remember that Time-of-flight depth sensors have a warm-up period during which temperature of
the sensor and processed values can drift. This can cause very unpredictable and hard to catch
errors, so we recommend running the sensor for 30-60 minutes before the test

• Don’t forget to rebuild the modules after making changes in config/source file

mailto:dmitrii.Monakhov@tuni.fi

Thank You
Dmitrii Monakhov

Dmitrii.Monakhov@tuni.fi

