
Wearable AR-based interaction
interface for HRC

Developer version

Preparation steps

• Hardware

• Preparing Software Environment

• Setting up Hololens/Kinect

• Installing Robot drivers, connecting robot to ROS

Hardware

• The following (or similar) hardware is needed in the setup

• Workstation

• Intel Core i7-6700HQ

• 16GB RAM

• NVIDIA GeForce GTX 970M

• Depth Sensor

• Microsoft KinectV2 (Other sensors are applicable, check compatibility with ROS environment)

• Microsoft Hololens

• Collaborative robot

• UR5

Software Environment
• Installing linux

• Recommended linux distribution is Ubuntu 18.04, since it is compatible with ROS melodic used in the
setup. Installation instructions can be followed from here https://linuxtechlab.com/step-by-step-guide-
to-install-ubuntu-18-04/

• Installing ROS
• This implementation uses ROS Melodic distribution, Installation instructions can be followed from here

http://wiki.ros.org/melodic/Installation/Ubuntu. Full-desktop installation is recommended
• To check if ROS is installed correctly run roscore inside command line and see if it outputs any errors

• Installing Unity
• The project uses Unity 3D editor 2017.4.1f1 version
• Vuforia Engine v7.5.20 is also required

• Download implementations for the Module’s ROS nodes from https://github.com/Herrandy/HRC-TUNI/.
The nodes should be downloaded to the src folder of your ROS workspace

• Build Module’s nodes using the following commands
• Source your default and workspace ROS environments
• cd <workspace_folder>

• rosdep install -r --from-paths .
• catkin_make -DCMAKE_BUILD_TYPE="Release"

https://github.com/Herrandy/HRC-TUNI/
https://linuxtechlab.com/step-by-step-guide-to-install-ubuntu-18-04/
http://wiki.ros.org/melodic/Installation/Ubuntu
https://github.com/Herrandy/HRC-TUNI/
https://linuxtechlab.com/step-by-step-guide-to-install-ubuntu-18-04/
https://linuxtechlab.com/step-by-step-guide-to-install-ubuntu-18-04/
https://linuxtechlab.com/step-by-step-guide-to-install-ubuntu-18-04/
http://wiki.ros.org/melodic/Installation/Ubuntu
http://wiki.ros.org/melodic/Installation/Ubuntu
https://github.com/Herrandy/HRC-TUNI/
https://github.com/Herrandy/HRC-TUNI/

Installing Depth Sensor

• Depth sensor is installed above the workspace

• The device should be installed perpendicular to the workspace area

• The device can be installed either to the ceiling or on a beam support

Kinect Drivers

• To use Kinect, one should first install device drivers

• Kinect V2 https://github.com/OpenKinect/libfreenect2

• Azure Kinect https://docs.microsoft.com/en-us/azure/kinect-dk/sensor-sdk-download

• Check if device is working correctly by running k4aviewer for azure, or provided test scripts for
KinectV2

• Next, install ROS interface for Kinect

• Kinect V2 https://github.com/code-iai/iai_kinect2

• Azure Kinect https://github.com/microsoft/Azure_Kinect_ROS_Driver

• The drivers provide test launch files to check whether the node publishes correct data

• For other depth sensors please check compatibility with ROS

https://github.com/microsoft/Azure_Kinect_ROS_Driver
https://github.com/OpenKinect/libfreenect2
https://docs.microsoft.com/en-us/azure/kinect-dk/sensor-sdk-download
https://github.com/code-iai/iai_kinect2
https://github.com/microsoft/Azure_Kinect_ROS_Driver
https://github.com/OpenKinect/libfreenect2
https://docs.microsoft.com/en-us/azure/kinect-dk/sensor-sdk-download
https://github.com/code-iai/iai_kinect2
https://github.com/microsoft/Azure_Kinect_ROS_Driver

Setting up robot

• The module is designed to work with UR5 cobot

• The base of the robot is assumed to be stationary

• Install ROS drivers for the robot

• ROS-industrial Universal Robot https://github.com/ros-industrial/universal_robot

• UR modern driver https://github.com/ros-industrial/ur_modern_driver

• Check the IP address of your robot

• You can check if the robot connection is working by using ping <robot_ip> command

• To check driver, run roslaunch ur_modern_driver ur5_bringup.launch

robot_ip:=<robot_ip>. Check if /joint_states topic publishes joint data

https://github.com/ros-industrial/ur_modern_driver
https://github.com/ros-industrial/universal_robot
https://github.com/ros-industrial/ur_modern_driver
https://github.com/ros-industrial/universal_robot
https://github.com/ros-industrial/ur_modern_driver

AR interface

• Purpose of the module

• Safety border

• Setting up UI

• Setting additional Parameters

• Testing Border

• Testing UI

Purpose of the module

• This module provides a visualization for the depth-based safety system and the UI
using a Hololens+depth sensor setup

• The safety area is visualized as a virtual wall in hololens around the robot. The
border is generated dynamically around the robot during its movement

• The module also visualizes UI elements that can provide instructions for the
operator and can be interacted with touch controls

Safety border

•For visualization of the safety border, the ‘Depth-sensor safety
model for HRC’ module should be deployed

•To install the module, please check the corresponding tutorial

Setting up UI

• It is assumed that the steps for safety module were performed, since some parameters
are shared between modules

• The Unity scene for the demo should be imported

• Create empty Unity Project

• Open Unity scene: File → Open Scene →
<path_to_package>\HoloRobo\Assets\Scenes\Scene.unity

• Vuforia provides tools for calibrating between the hololens and a pre-specified marker.
After the calibration is done, measure the distance between the marker and the robot base
and update the parameter in the code

Setting additional parameters

• Some parameters may need to be adjusted for module to work properly

• The parameters are stored inside unity_msgs/configs/config.yaml file

• interaction_button_thres – the threshold in depth that defines whether the button was interacted with

Testing safety border visualization
• Run your test program for the robot

• Run the following commands in separate consoles
• roscore

• roslaunch ur_modern_driver ur5_bringup.launch robot_ip:=<real robot 192.168.125.100 or
simulated 127.0.0.1>

• roslaunch kinect2_bridge kinect2_bridge.launch max_depth:=2.0 publish_tf:=true

• roslaunch safety_model detect.launch safety_map_scale:=100 cluster_tolerance:=0.005
min_cluster_size:=200 anomalies_threshold:=20 cloud_diff_threshold:=0.02 viz:=false

• Build the Unity project, target build - hololens

• Upload to Hololens

• Start the application from the Hololens application list.

• Establish the wireless communication channel between the computer and Hololens: rosrun ar
tcp_server.py

• You should see red wall around the robot

http://127.0.0.1
http://127.0.0.1
http://192.168.125.100
http://127.0.0.1

Testing UI

• Run same commands as in previous step

• When putting your hand over ‘start’ and ‘stop’ buttons, the UI should change

• Putting your hands over ‘stop’ and ‘dead man switch’ buttons should stop the robot

• Putting your hands over ‘start’ and ‘dead man switch’ buttons should start robot again

• dashboard_client.py console should output what buttons are being interacted with.

• If buttons do not respond, try positioning your hand at higher locations over the button or
changing interaction_button_thres to lower values

Config files

• List of important configuration files for the modules
• /calibration/launch/tf_broadcast.launch –transformation from Kinect to robot

• /unity_msgs/configs/config.yaml – parameters for the safety and UI modules

• /unity_msgs/configs/mobile_demo/projector_buttons.yaml – locations of the UI elements

Maintenance and troubleshooting

• Here we give general recommendations for troubleshooting, for more specific problems
please email to dmitrii.monakhov@tuni.fi, we will help

• General tips for troubleshooting

• Always check if you sourced ROS environment on any new console tab before running
commands. If you are using a single ROS environment, it may be easier to add source
commands to .bashrc so it is done automatically

• Check output of the scripts in the console, as it can give hints for errors

• Remember that Time-of-flight depth sensors have a warm-up period during which temperature of
the sensor and processed values can drift. This can cause very unpredictable and hard to catch
errors, so we recommend running the sensor for 30-60 minutes before the test

• Don’t forget to rebuild the modules after making changes in config/source file

mailto:dmitrii.Monakhov@tuni.fi
mailto:dmitrii.Monakhov@tuni.fi
mailto:dmitrii.Monakhov@tuni.fi
mailto:dmitrii.Monakhov@tuni.fi

Thank You
Dmitrii Monakhov

Dmitrii.Monakhov@tuni.fi

mailto:Dmitrii.Monakhov@tuni.fi
mailto:Dmitrii.Monakhov@tuni.fi
mailto:Dmitrii.Monakhov@tuni.fi

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17

